Redirecting to original paper in 30 seconds...
Click below to go immediately or wait for automatic redirect
📄 Abstract
Abstract: In autoregressive (AR) image generation, visual tokenizers compress images
into compact discrete latent tokens, enabling efficient training of downstream
autoregressive models for visual generation via next-token prediction. While
scaling visual tokenizers improves image reconstruction quality, it often
degrades downstream generation quality -- a challenge not adequately addressed
in existing literature. To address this, we introduce GigaTok, the first
approach to simultaneously improve image reconstruction, generation, and
representation learning when scaling visual tokenizers. We identify the growing
complexity of latent space as the key factor behind the reconstruction vs.
generation dilemma. To mitigate this, we propose semantic regularization, which
aligns tokenizer features with semantically consistent features from a
pre-trained visual encoder. This constraint prevents excessive latent space
complexity during scaling, yielding consistent improvements in both
reconstruction and downstream autoregressive generation. Building on semantic
regularization, we explore three key practices for scaling tokenizers:(1) using
1D tokenizers for better scalability, (2) prioritizing decoder scaling when
expanding both encoder and decoder, and (3) employing entropy loss to stabilize
training for billion-scale tokenizers. By scaling to $\bf{3 \space billion}$
parameters, GigaTok achieves state-of-the-art performance in reconstruction,
downstream AR generation, and downstream AR representation quality.