Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_cv 88% Match 2 months ago

Language-to-Space Programming for Training-Free 3D Visual Grounding

robotics › navigation
📄 Abstract

Abstract: 3D visual grounding (3DVG) is challenging due to the need to understand 3D spatial relations. While supervised approaches have achieved superior performance, they are constrained by the scarcity and high annotation costs of 3D vision-language datasets. Training-free approaches based on LLMs/VLMs eliminate the need for large-scale training data, but they either incur prohibitive grounding time and token costs or have unsatisfactory accuracy. To address the challenges, we introduce a novel method for training-free 3D visual grounding, namely Language-to-Space Programming (LaSP). LaSP introduces LLM-generated codes to analyze 3D spatial relations among objects, along with a pipeline that evaluates and optimizes the codes automatically. Experimental results demonstrate that LaSP achieves 52.9% accuracy on the Nr3D benchmark, ranking among the best training-free methods. Moreover, it substantially reduces the grounding time and token costs, offering a balanced trade-off between performance and efficiency.