Redirecting to original paper in 30 seconds...
Click below to go immediately or wait for automatic redirect
📄 Abstract
Abstract: This paper introduces TempSamp-R1, a new reinforcement fine-tuning framework
designed to improve the effectiveness of adapting multimodal large language
models (MLLMs) to video temporal grounding tasks. We reveal that existing
reinforcement learning methods, such as Group Relative Policy Optimization
(GRPO), rely on on-policy sampling for policy updates. However, in tasks with
large temporal search spaces, this strategy becomes both inefficient and
limited in performance, as it often fails to identify temporally accurate
solutions. To address this limitation, TempSamp-R1 leverages ground-truth
annotations as off-policy supervision to provide temporally precise guidance,
effectively compensating for the sparsity and misalignment in on-policy
solutions. To further stabilize training and reduce variance in reward-based
updates, TempSamp-R1 provides a non-linear soft advantage computation method
that dynamically reshapes the reward feedback via an asymmetric transformation.
By employing a hybrid Chain-of-Thought (CoT) training paradigm, TempSamp-R1
optimizes a single unified model to support both CoT and non-CoT inference
modes, enabling efficient handling of queries with varying reasoning
complexity. Experimental results demonstrate that TempSamp-R1 outperforms
GRPO-based baselines, establishing new state-of-the-art performance on
benchmark datasets: Charades-STA (R1@0.7: 52.9%, +2.7%), ActivityNet Captions
(R1@0.5: 56.0%, +5.3%), and QVHighlights (mAP: 30.0%, +3.0%). Moreover,
TempSamp-R1 shows robust few-shot generalization capabilities under limited
data. Code: https://github.com/HVision-NKU/TempSamp-R1