Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_cv 80% Match 1 month ago

SeamCrafter: Enhancing Mesh Seam Generation for Artist UV Unwrapping via Reinforcement Learning

reinforcement-learning › robotics-rl
📄 Abstract

Abstract: Mesh seams play a pivotal role in partitioning 3D surfaces for UV parametrization and texture mapping. Poorly placed seams often result in severe UV distortion or excessive fragmentation, thereby hindering texture synthesis and disrupting artist workflows. Existing methods frequently trade one failure mode for another-producing either high distortion or many scattered islands. To address this, we introduce SeamCrafter, an autoregressive GPT-style seam generator conditioned on point cloud inputs. SeamCrafter employs a dual-branch point-cloud encoder that disentangles and captures complementary topological and geometric cues during pretraining. To further enhance seam quality, we fine-tune the model using Direct Preference Optimization (DPO) on a preference dataset derived from a novel seam-evaluation framework. This framework assesses seams primarily by UV distortion and fragmentation, and provides pairwise preference labels to guide optimization. Extensive experiments demonstrate that SeamCrafter produces seams with substantially lower distortion and fragmentation than prior approaches, while preserving topological consistency and visual fidelity.