Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_cv 87% Match 1 month ago

Reconstruct Anything Model: a lightweight foundation model for computational imaging

computer-vision › scene-understanding
📄 Abstract

Abstract: Most existing learning-based methods for solving imaging inverse problems can be roughly divided into two classes: iterative algorithms, such as plug-and-play and diffusion methods leveraging pretrained denoisers, and unrolled architectures that are trained end-to-end for specific imaging problems. Iterative methods in the first class are computationally costly and often yield suboptimal reconstruction performance, whereas unrolled architectures are generally problem-specific and require expensive training. In this work, we propose a novel non-iterative, lightweight architecture that incorporates knowledge about the forward operator (acquisition physics and noise parameters) without relying on unrolling. Our model is trained to solve a wide range of inverse problems, such as deblurring, magnetic resonance imaging, computed tomography, inpainting, and super-resolution, and handles arbitrary image sizes and channels, such as grayscale, complex, and color data. The proposed model can be easily adapted to unseen inverse problems or datasets with a few fine-tuning steps (up to a few images) in a self-supervised way, without ground-truth references. Throughout a series of experiments, we demonstrate state-of-the-art performance from medical imaging to low-photon imaging and microscopy. Our code is available at https://github.com/matthieutrs/ram.