Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_cv 98% Match Research Paper AI Researchers,Machine Learning Engineers,Developers working with LMMs,Data Scientists 1 month ago

Ranked from Within: Ranking Large Multimodal Models Without Labels

large-language-models › evaluation
📄 Abstract

Abstract: Can the relative performance of a pre-trained large multimodal model (LMM) be predicted without access to labels? As LMMs proliferate, it becomes increasingly important to develop efficient ways to choose between them when faced with new data or tasks. The usual approach does the equivalent of giving the models an exam and marking them. We opt to avoid marking and the associated labor of determining the ground-truth answers. Instead, we explore other signals elicited and ascertain how well the models know their own limits, evaluating the effectiveness of these signals at unsupervised model ranking. We evaluate $47$ state-of-the-art LMMs (\eg, LLaVA) across $9$ visual question answering benchmarks, analyzing how well uncertainty-based metrics can predict relative model performance. Our findings show that uncertainty scores derived from softmax distributions provide a robust and consistent basis for ranking models across various tasks. This facilitates the ranking of LMMs on unlabeled data, providing a practical approach for selecting models for diverse target domains without requiring manual annotation.

Key Contributions

Investigates the effectiveness of using uncertainty scores derived from softmax distributions as signals for unsupervised ranking of Large Multimodal Models (LMMs). Demonstrates that these uncertainty scores provide a robust and consistent basis for ranking models across various Visual Question Answering (VQA) tasks, enabling model selection without ground-truth labels.

Business Value

Significantly reduces the cost and effort required to select the best performing LMM for a given task, accelerating development cycles and improving the efficiency of AI deployments. Enables users to choose models without needing extensive labeled evaluation datasets.