Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_ml 90% Match Research Paper Researchers,Academics,Librarians,Developers of research platforms 3 weeks ago

MIARec: Mutual-influence-aware Heterogeneous Network Embedding for Scientific Paper Recommendation

graph-neural-networks › graph-learning
📄 Abstract

Abstract: With the rapid expansion of scientific literature, scholars increasingly demand precise and high-quality paper recommendations. Among various recommendation methodologies, graph-based approaches have garnered attention by effectively exploiting the structural characteristics inherent in scholarly networks. However, these methods often overlook the asymmetric academic influence that is prevalent in scholarly networks when learning graph representations. To address this limitation, this study proposes the Mutual-Influence-Aware Recommendation (MIARec) model, which employs a gravity-based approach to measure the mutual academic influence between scholars and incorporates this influence into the feature aggregation process during message propagation in graph representation learning. Additionally, the model utilizes a multi-channel aggregation method to capture both individual embeddings of distinct single relational sub-networks and their interdependent embeddings, thereby enabling a more comprehensive understanding of the heterogeneous scholarly network. Extensive experiments conducted on real-world datasets demonstrate that the MIARec model outperforms baseline models across three primary evaluation metrics, indicating its effectiveness in scientific paper recommendation tasks.
Authors (2)
Wenjin Xie
Tao Jia
Submitted
October 14, 2025
arXiv Category
cs.IR
arXiv PDF

Key Contributions

Proposes MIARec, a novel graph-based recommendation model for scientific papers that explicitly models mutual academic influence using a gravity-based approach. It incorporates this influence into feature aggregation and uses multi-channel aggregation to capture both individual and interdependent embeddings from relational sub-networks.

Business Value

Helps researchers discover relevant literature more efficiently, accelerating scientific progress and innovation.