Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_ml 50% Match 2 weeks ago

FedLoDrop: Federated LoRA with Dropout for Generalized LLM Fine-tuning

uncategorized › parse-error
📄 Abstract

Abstract: Fine-tuning (FT) large language models (LLMs) is crucial for adapting general-purpose models to specific tasks, enhancing accuracy and relevance with minimal resources. To further enhance generalization ability while reducing training costs, this paper proposes Federated LoRA with Dropout (FedLoDrop), a new framework that applies dropout to the rows and columns of the trainable matrix in Federated LoRA. A generalization error bound and convergence analysis under sparsity regularization are obtained, which elucidate the fundamental trade-off between underfitting and overfitting. The error bound reveals that a higher dropout rate increases model sparsity, thereby lowering the upper bound of pointwise hypothesis stability (PHS). While this reduces the gap between empirical and generalization errors, it also incurs a higher empirical error, which, together with the gap, determines the overall generalization error. On the other hand, though dropout reduces communication costs, deploying FedLoDrop at the network edge still faces challenges due to limited network resources. To address this issue, an optimization problem is formulated to minimize the upper bound of the generalization error, by jointly optimizing the dropout rate and resource allocation subject to the latency and per-device energy consumption constraints. To solve this problem, a branch-and-bound (B\&B)-based method is proposed to obtain its globally optimal solution. Moreover, to reduce the high computational complexity of the B\&B-based method, a penalized successive convex approximation (P-SCA)-based algorithm is proposed to efficiently obtain its high-quality suboptimal solution. Finally, numerical results demonstrate the effectiveness of the proposed approach in mitigating overfitting and improving the generalization capability.

Key Contributions

JSON parse error: Unexpected token s in JSON at position 29506