Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_ai 90% Match Research Paper Speech Recognition Researchers,Security Engineers,Telecommunication Companies,Law Enforcement 2 weeks ago

EchoFake: A Replay-Aware Dataset for Practical Speech Deepfake Detection

speech-audio › text-to-speech
📄 Abstract

Abstract: The growing prevalence of speech deepfakes has raised serious concerns, particularly in real-world scenarios such as telephone fraud and identity theft. While many anti-spoofing systems have demonstrated promising performance on lab-generated synthetic speech, they often fail when confronted with physical replay attacks-a common and low-cost form of attack used in practical settings. Our experiments show that models trained on existing datasets exhibit severe performance degradation, with average accuracy dropping to 59.6% when evaluated on replayed audio. To bridge this gap, we present EchoFake, a comprehensive dataset comprising more than 120 hours of audio from over 13,000 speakers, featuring both cutting-edge zero-shot text-to-speech (TTS) speech and physical replay recordings collected under varied devices and real-world environmental settings. Additionally, we evaluate three baseline detection models and show that models trained on EchoFake achieve lower average EERs across datasets, indicating better generalization. By introducing more practical challenges relevant to real-world deployment, EchoFake offers a more realistic foundation for advancing spoofing detection methods.
Authors (3)
Tong Zhang
Yihuan Huang
Yanzhen Ren
Submitted
October 22, 2025
arXiv Category
eess.AS
arXiv PDF

Key Contributions

Introduces EchoFake, a comprehensive dataset (120+ hours, 13,000+ speakers) specifically designed for practical speech deepfake detection, including cutting-edge TTS and physical replay recordings. This dataset addresses the severe performance degradation of existing models on replay attacks, a common real-world threat.

Business Value

Enhances security in voice-based communication systems by providing tools to detect sophisticated deepfake attacks, particularly those involving replay mechanisms. Crucial for preventing fraud and identity theft.