Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_ml 95% Match Research Paper ML Researchers,Hardware Engineers,AI System Designers 2 weeks ago

Energy-Efficient and Dequantization-Free Q-LLMs: A Spiking Neural Network Approach to Salient Value Mitigation

large-language-models › model-architecture
📄 Abstract

Abstract: In the era of large language models (LLMs), weight-activation quantization helps fit models on edge device by reducing memory and compute bit-widths. However, three challenges persist for energy constrained hardware: (1) even after quantization, multiply-accumulate (MAC) operations remain unavoidable and continue to dominate energy consumption; (2) dequantization (or per-tensor/channel rescaling) introduces extra arithmetic and data movement, increasing latency and energy; (3) uniform parameters bit widths clip salient values-while intra-channel mixed precision is generally impractical on current matrix hardware and memory. In contrast, brain-inspired Spiking Neural Networks (SNNs), owing to their binary spike-based information representation and the Integrate-and-Fire (IF) paradigm, naturally support mixed-precision storage and energy-efficient computation by replacing complex MACs with temporal Accumulate (ACCs). Motivated by this property, we propose SpikeQuant, which selectively applies mixed-precision quantization to activations with salient values and re-encodes them into binary spike counts, thereby enabling dynamic mixed storage of different bitwidths. Furthermore, by embedding the quantization scale into the threshold of the IF mechanism, our approach performs energy-efficient linear transformations on weights and activations while avoiding explicit dequantization. Experimental results demonstrate that SpikeQuant consistently achieves near-FP16 perplexity under W4A4 quantization while reducing energy cost by up to 4.6 times compared to existing methods, highlighting its effectiveness for accurate and energy-efficient LLM deployment.
Authors (5)
Chenyu Wang
Zhanglu Yan
Zhi Zhou
Xu Chen
Weng-Fai Wong
Submitted
October 22, 2025
arXiv Category
cs.LG
arXiv PDF

Key Contributions

Proposes SpikeQuant, a method that leverages Spiking Neural Networks (SNNs) to achieve energy-efficient and dequantization-free LLM inference on edge devices. SNNs naturally support mixed precision and replace MAC operations with temporal accumulation, mitigating salient value issues.

Business Value

Significantly reduces the energy footprint of LLMs on edge devices, enabling longer battery life and more complex AI functionalities in power-constrained environments.