Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_ai 94% Match Research Paper GIS analysts,Data scientists,Urban planners,Environmental scientists,AI researchers 1 week ago

From Questions to Queries: An AI-powered Multi-Agent Framework for Spatial Text-to-SQL

large-language-models › reasoning
📄 Abstract

Abstract: The complexity of Structured Query Language (SQL) and the specialized nature of geospatial functions in tools like PostGIS present significant barriers to non-experts seeking to analyze spatial data. While Large Language Models (LLMs) offer promise for translating natural language into SQL (Text-to-SQL), single-agent approaches often struggle with the semantic and syntactic complexities of spatial queries. To address this, we propose a multi-agent framework designed to accurately translate natural language questions into spatial SQL queries. The framework integrates several innovative components, including a knowledge base with programmatic schema profiling and semantic enrichment, embeddings for context retrieval, and a collaborative multi-agent pipeline as its core. This pipeline comprises specialized agents for entity extraction, metadata retrieval, query logic formulation, SQL generation, and a review agent that performs programmatic and semantic validation of the generated SQL to ensure correctness (self-verification). We evaluate our system using both the non-spatial KaggleDBQA benchmark and a new, comprehensive SpatialQueryQA benchmark that includes diverse geometry types, predicates, and three levels of query complexity. On KaggleDBQA, the system achieved an overall accuracy of 81.2% (221 out of 272 questions) after the review agent's review and corrections. For spatial queries, the system achieved an overall accuracy of 87.7% (79 out of 90 questions), compared with 76.7% without the review agent. Beyond accuracy, results also show that in some instances the system generates queries that are more semantically aligned with user intent than those in the benchmarks. This work makes spatial analysis more accessible, and provides a robust, generalizable foundation for spatial Text-to-SQL systems, advancing the development of autonomous GIS.
Authors (4)
Ali Khosravi Kazazi
Zhenlong Li
M. Naser Lessani
Guido Cervone
Submitted
October 23, 2025
arXiv Category
cs.AI
arXiv PDF

Key Contributions

Proposes a multi-agent framework for accurate spatial Text-to-SQL translation, addressing LLM limitations with complex spatial queries. It integrates a knowledge base, semantic enrichment, and specialized agents for entity extraction, metadata retrieval, query logic, SQL generation, and validation, improving accuracy for non-experts.

Business Value

Democratizes access to geospatial data analysis by allowing users to query complex spatial databases using natural language, accelerating insights for planning, research, and operations.