Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_ai 75% Match Research Paper Machine Learning Researchers,Theoretical Computer Scientists,Data Scientists 1 week ago

Representer Theorems for Metric and Preference Learning: Geometric Insights and Algorithms

graph-neural-networks › graph-learning
📄 Abstract

Abstract: We develop a mathematical framework to address a broad class of metric and preference learning problems within a Hilbert space. We obtain a novel representer theorem for the simultaneous task of metric and preference learning. Our key observation is that the representer theorem for this task can be derived by regularizing the problem with respect to the norm inherent in the task structure. For the general task of metric learning, our framework leads to a simple and self-contained representer theorem and offers new geometric insights into the derivation of representer theorems for this task. In the case of Reproducing Kernel Hilbert Spaces (RKHSs), we illustrate how our representer theorem can be used to express the solution of the learning problems in terms of finite kernel terms similar to classical representer theorems. Lastly, our representer theorem leads to a novel nonlinear algorithm for metric and preference learning. We compare our algorithm against challenging baseline methods on real-world rank inference benchmarks, where it achieves competitive performance. Notably, our approach significantly outperforms vanilla ideal point methods and surpasses strong baselines across multiple datasets. Code available at: https://github.com/PeymanMorteza/Metric-Preference-Learning-RKHS
Authors (1)
Peyman Morteza
Submitted
April 7, 2023
arXiv Category
cs.LG
arXiv PDF

Key Contributions

Develops a unified mathematical framework for metric and preference learning using representer theorems in Hilbert spaces. It provides new geometric insights, a self-contained representer theorem for metric learning, and a novel nonlinear algorithm derived from this framework.

Business Value

Improved algorithms for learning similarity and preference relationships can enhance recommendation systems, search engines, and data clustering, leading to better user experiences and more efficient data analysis.