Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_ml 0% Match 6 days ago

Spectral Perturbation Bounds for Low-Rank Approximation with Applications to Privacy

uncategorized
📄 Abstract

Abstract: A central challenge in machine learning is to understand how noise or measurement errors affect low-rank approximations, particularly in the spectral norm. This question is especially important in differentially private low-rank approximation, where one aims to preserve the top-$p$ structure of a data-derived matrix while ensuring privacy. Prior work often analyzes Frobenius norm error or changes in reconstruction quality, but these metrics can over- or under-estimate true subspace distortion. The spectral norm, by contrast, captures worst-case directional error and provides the strongest utility guarantees. We establish new high-probability spectral-norm perturbation bounds for symmetric matrices that refine the classical Eckart--Young--Mirsky theorem and explicitly capture interactions between a matrix $A \in \mathbb{R}^{n \times n}$ and an arbitrary symmetric perturbation $E$. Under mild eigengap and norm conditions, our bounds yield sharp estimates for $\|(A + E)_p - A_p\|$, where $A_p$ is the best rank-$p$ approximation of $A$, with improvements of up to a factor of $\sqrt{n}$. As an application, we derive improved utility guarantees for differentially private PCA, resolving an open problem in the literature. Our analysis relies on a novel contour bootstrapping method from complex analysis and extends it to a broad class of spectral functionals, including polynomials and matrix exponentials. Empirical results on real-world datasets confirm that our bounds closely track the actual spectral error under diverse perturbation regimes.
Authors (3)
Phuc Tran
Nisheeth K. Vishnoi
Van H. Vu
Submitted
October 29, 2025
arXiv Category
cs.LG
arXiv PDF