Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_ml 75% Match Theoretical Research Paper Machine Learning Theorists,Deep Learning Researchers,Students of ML Theory 19 hours ago

Emergence and scaling laws in SGD learning of shallow neural networks

generative-ai › flow-models
📄 Abstract

Abstract: We study the complexity of online stochastic gradient descent (SGD) for learning a two-layer neural network with $P$ neurons on isotropic Gaussian data: $f_*(\boldsymbol{x}) = \sum_{p=1}^P a_p\cdot \sigma(\langle\boldsymbol{x},\boldsymbol{v}_p^*\rangle)$, $\boldsymbol{x} \sim \mathcal{N}(0,\boldsymbol{I}_d)$, where the activation $\sigma:\mathbb{R}\to\mathbb{R}$ is an even function with information exponent $k_*>2$ (defined as the lowest degree in the Hermite expansion), $\{\boldsymbol{v}^*_p\}_{p\in[P]}\subset \mathbb{R}^d$ are orthonormal signal directions, and the non-negative second-layer coefficients satisfy $\sum_{p} a_p^2=1$. We focus on the challenging ``extensive-width'' regime $P\gg 1$ and permit diverging condition number in the second-layer, covering as a special case the power-law scaling $a_p\asymp p^{-\beta}$ where $\beta\in\mathbb{R}_{\ge 0}$. We provide a precise analysis of SGD dynamics for the training of a student two-layer network to minimize the mean squared error (MSE) objective, and explicitly identify sharp transition times to recover each signal direction. In the power-law setting, we characterize scaling law exponents for the MSE loss with respect to the number of training samples and SGD steps, as well as the number of parameters in the student neural network. Our analysis entails that while the learning of individual teacher neurons exhibits abrupt transitions, the juxtaposition of $P\gg 1$ emergent learning curves at different timescales leads to a smooth scaling law in the cumulative objective.

Key Contributions

This paper provides a precise analysis of Stochastic Gradient Descent (SGD) dynamics for learning a two-layer neural network in the extensive-width regime. It characterizes the emergence of solutions and derives scaling laws, offering theoretical insights into the learning process and complexity of shallow networks under specific data distributions and network configurations.

Business Value

Provides fundamental theoretical understanding that can inform the design and training of more efficient and effective neural network architectures in the future.