Redirecting to original paper in 30 seconds...

Click below to go immediately or wait for automatic redirect

arxiv_cv 70% Match Research Paper Robotics engineers,Computer vision researchers,3D scanning specialists,Researchers in automated inspection 17 hours ago

Mobile Robotic Multi-View Photometric Stereo

robotics › manipulation
📄 Abstract

Abstract: Multi-View Photometric Stereo (MVPS) is a popular method for fine-detailed 3D acquisition of an object from images. Despite its outstanding results on diverse material objects, a typical MVPS experimental setup requires a well-calibrated light source and a monocular camera installed on an immovable base. This restricts the use of MVPS on a movable platform, limiting us from taking MVPS benefits in 3D acquisition for mobile robotics applications. To this end, we introduce a new mobile robotic system for MVPS. While the proposed system brings advantages, it introduces additional algorithmic challenges. Addressing them, in this paper, we further propose an incremental approach for mobile robotic MVPS. Our approach leverages a supervised learning setup to predict per-view surface normal, object depth, and per-pixel uncertainty in model-predicted results. A refined depth map per view is obtained by solving an MVPS-driven optimization problem proposed in this paper. Later, we fuse the refined depth map while tracking the camera pose w.r.t the reference frame to recover globally consistent object 3D geometry. Experimental results show the advantages of our robotic system and algorithm, featuring the local high-frequency surface detail recovery with globally consistent object shape. Our work is beyond any MVPS system yet presented, providing encouraging results on objects with unknown reflectance properties using fewer frames without a tiring calibration and installation process, enabling computationally efficient robotic automation approach to photogrammetry. The proposed approach is nearly 100 times computationally faster than the state-of-the-art MVPS methods such as [1, 2] while maintaining the similar results when tested on subjects taken from the benchmark DiLiGenT MV dataset [3].

Key Contributions

Introduces a novel mobile robotic system for Multi-View Photometric Stereo (MVPS) and an incremental approach to address the associated algorithmic challenges. The method leverages supervised learning for initial predictions and an MVPS-driven optimization for refined depth maps, enabling real-time 3D acquisition on mobile platforms.

Business Value

Enables robots to perform high-fidelity 3D scanning and inspection tasks in dynamic or unstructured environments, crucial for tasks like quality control, assembly, and exploration.